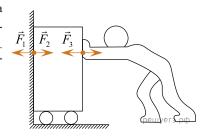
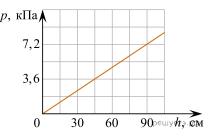
## Централизованное тестирование по физике, 2013


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида  $(1,4 \pm 0,2)$  Н записывайте следующим образом: 1,40,2.

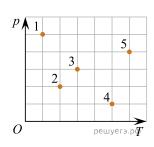
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Единицей измерения частоты колебаний в СИ является:
  - 1) 1 M
- 2) 1 кг
- 3) 1 Πa
- 4) 1 Дж
- 5) 1 Γ<sub>II</sub>
- 2. Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени  $\Delta t = 18$  мин автомобиль проехал путь s, равный:




- 3. Голубь пролетел путь из пункта А в пункт В, а затем вернулся обратно, двигаясь с одной и той же скоростью относительно воздуха. При попутном ветре, скорость которого была постоянной, путь AB голубь пролетел за промежуток времени  $\Delta t_1 = 24$  мин, а путь BA при встречном ветре — за промежуток времени  $\Delta t_2 = 40$  мин.
  - В безветренную погоду путь AB голубь пролетел бы за промежуток времени  $\Delta t_3$ , равный:
    - 1) 28 мин
- 2) 30 мин
- 3) 34 мин
- 4) 36 мин
- 4. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны:  $\vec{F}_1$  — сила, с которой контейнер действует на стену;  $\vec{F}_2$  — сила, с которой стена действует на контейнер;  $\vec{F}_3$  — сила, с которой человек действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?




- 1)  $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$  2)  $\vec{F}_2 = -\vec{F}_3$  3)  $\vec{F}_1 = \vec{F}_3$  4)  $\vec{F}_1 \vec{F}_2 + \vec{F}_3 = 0$  5)  $\vec{F}_1 = -\vec{F}_2$
- 5. Два вагона, сцепленные друг с другом и движущиеся со скоростью, модуль которой  $v_0 = 3,0$   $\frac{M}{c}$ , столкнулись с тремя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости о будет равен:
  - 1)  $0.80 \frac{M}{c}$  2)  $1.2 \frac{M}{c}$  3)  $1.9 \frac{M}{c}$  4)  $2.3 \frac{M}{c}$  5)  $3.0 \frac{M}{c}$

- **6.** На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность  $\rho$  которой равна:



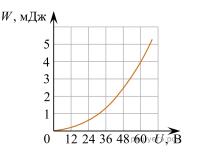
- 1) 1,2  $\frac{\Gamma}{\text{cm}^3}$  2) 1,1  $\frac{\Gamma}{\text{cm}^3}$  3) 1,0  $\frac{\Gamma}{\text{cm}^3}$  4) 0,90  $\frac{\Gamma}{\text{cm}^3}$
- 5)  $0.80 \frac{\Gamma}{\text{cm}^3}$

- 7. Если абсолютная температура тела Т=330 K, то его температура t по шкале Цельсия равна:
- 1) 17 °C 2) 27 °C 3) 37 °C
- 5) 77 °C
- 8. На p-T диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению p газа, обозначено цифрой:

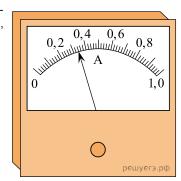


- 1) 1 2) 2
- 3)3

4) 57 °C

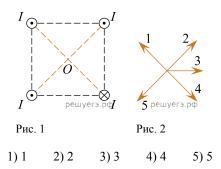

- **9.** В баллоне вместимостью  $V = 0.028 \ \text{м}^3$  находится идеальный газ  $(M = 2.0 \ \frac{\Gamma}{\text{МОЛЬ}})$  при температуре  $T = 300 \ \text{K}$ . Если масса газа m = 2,0 г, то давление газа p на стенки баллона равно:
  - 96 κΠα
- 2) 89 κΠa
- **3)** 82 κΠa

3)3


- **4)** 76 κΠa
- 5) 67 κΠa
- 10. В паспорте солнечной батареи приведены следующие технические характеристики:
- 1) 7,36 A; 2) 230 BT;
- 3) 20,4 кг; 4) 14,3 %;
- 5) 31,25 B.

Параметр, характеризующий силу тока, указан в строке, номер которой:

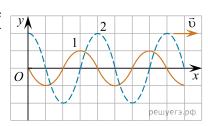
- 1) 1
- 2) 2
- 4) 4
- 5)5
- **11.** График зависимости энергии W конденсатора от напряжения на нем U представлен на рисунке. Ёмкость конденсатора C равна:




- 1) 1,5 мкФ
- 2) 2,2 мкФ
- 3) 4,4 мкФ
- 4) 6,7 мкФ
- 5) 15 мкФ
- 12. Идеальный амперметр, изображенный на рисунке, и резистор соединены последовательно и подключены к источнику постоянного тока. Если напряжение на резисторе U = 4,5 В, то его сопротивление R равно:

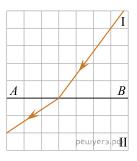


- 1) 20 Om
- 2) 15 O<sub>M</sub>
- 3) 13 O<sub>M</sub>
- 4) 11 O<sub>M</sub>
- 5) 10 O<sub>M</sub>


13. Четыре длинных прямолинейных проводника, сила тока в которых одинакова, расположены в воздухе параллельно друг другу так, что центры их поперечных сечений находятся в вершинах квадрата (см.рис. 1). Направление вектора индукции  $\vec{B}$  результирующего магнитного поля, созданного этими токами в точке O, на рисунке 2 обозначено цифрой:

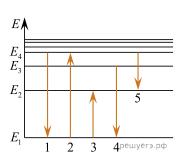


**14.** Сила тока в катушке индуктивности равномерно уменьшилась от  $I_1$  = 4,0 A до  $I_2$  = 0,0 A за промежуток времени  $\Delta t = 0, 10 \; \mathrm{c}$ . Если в катушке возникла ЭДС самоиндукции  $\varepsilon_{\mathrm{u}} = 12 \; \mathrm{B}$ , то индуктивность катушки L равна:


- 1) 0.10 Гн
- 2) 0,15 Гн
- 3) 0.30 Гн
- 4) 0.55 Гн
- 5) 0.75 Γ<sub>H</sub>

15. На рисунке представлены две поперечные волны 1 и 2, распространяющиеся с одинаковой скоростью вдоль оси Ох. Выберите ответ с правильным соотношением и периодов  $T_1$ ,  $T_2$  этих волн, и их амплитуд  $A_1$ ,  $A_2$ :

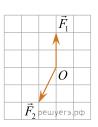



- 1)  $T_1 < T_2, A_1 < A_2$ . 2)  $T_1 = T_2, A_1 < A_2$ . 3)  $T_1 = T_2, A_1 = A_2$ . 4)  $T_1 > T_2, A_1 = A_2$ .
- 5)  $T_1 > T_2, A_1 > A_2$ .

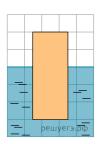
16. На границу раздела АВ двух прозрачных сред падает световой луч (см.рис.). Если абсолютный показатель преломления первой среды  $n_{\rm I}=1,75$ , то абсолютный показатель преломления второй среды  $n_{\rm II}$  равен:



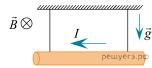
- 1) 1,08
- 2) 1,17
- 3) 1,26
- 4) 1,50
- 5) 2,43


17. На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наименьшей частотой у атом испускает при переходе, обозначенном цифрой:




- 1) 1

- **18.** Ядро изотопа берклия  $^{249}_{97}$ Вк состоит из:
  - 1) 249 протонов и 249 нейтрона 4) 249 протонов и 152 нейтронов
    - 2) 97 протонов и 97 нейтронов
- 3) 249 протонов и 97 нейтронов 5) 97 протонов и 152 нейтронов
- **19.** Тело, которое падало без начальной скорости  $(v_0=0\ \frac{M}{C})$  с некоторой высоты, за последнюю секунду движения прошло путь s = 35 м. Высота h, с которой тело упало, равна ... м.


**20.** На покоящуюся материальную точку O начинают действовать две силы  $\vec{F_1}$  и  $\vec{F_2}$  (см.рис.), причём модуль первой силы  $F_1$  = 8 Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой  $F_3$  равен ... **H**.



**21.** Цилиндр плавает в воде  $\rho_{\rm K}=1000~\frac{{
m K}\Gamma}{{
m M}^3}$  в вертикальном положении (см.рис.). Если масса цилиндра  $m=27~{
m K}$ г, то объем V цилиндра равна ...  ${
m дm}^3$ .



- **22.** Два маленьких шарика массами  $m_1$  = 18 г и  $m_2$  = 9,0 г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha = 60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись  $h_{\rm max} = 8,0$  см, то длина l нити равна ... см.
- **23.** Идеальный одноатомный газ, масса которого m=8,0 кг находится в сосуде под давлением p=123 кПа. Если средняя квадратичная скорость движения молекул газа равна  $< v_{\text{кв}} > = 680 \ \frac{\text{M}}{c}$ , то вместимость V сосуда равна ...  $\mathbf{m}^3$ .
- **24.** Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если коэффициент полезного действия печи  $\eta=63\%$ , то вода  $(c=4,2\frac{\kappa \square ж}{\text{кг}\cdot {}^{\circ}C})$  массой  $\mathit{m}=0,40$  кг за промежуток времени  $\Delta \tau=80$  с, нагреется от температуры  $t_1=15$  °C до температуры  $t_2$  равной ...  ${}^{\mathbf{o}}\mathbf{C}$ .
- **25.** При изобарном нагревании идеального одноатомного газа, количество вещества которого v = 9 моль, объем газа увеличился в k = 2,0 раза. Если начальная температура газа  $t_1 = 27$  °C, то газу было передано количество теплоты Q, равное ...  $\kappa Дж$ .
- **26.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,9 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha=45^\circ$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние I, равное ... дм.
- 27. К источнику постоянного тока с ЭДС  $\varepsilon=60~{\rm B}$  и внутренним сопротивлением  $r=1,4~{\rm Om}$  подключили два параллельно соединенных резистора. Если сопротивление резисторов  $R_1=8,0~{\rm Om}$  и  $R_2=2,0~{\rm Om}$ , то напряжение U на клеммах источника равно ...  ${\rm B}$ .
- **28.** В однородном магнитном поле, модуль магнитной индукции которого B=0,40 Тл, на двух невесомых нерастяжимых нитях подвешен в горизонтальном положении прямой проводник (см.рис.). Линии индукции магнитного поля горизонтальны и перпендикулярны проводнику. После того как по проводнику пошёл ток I=5,0 А, модуль силы натяжения  $F_{\rm H}$  каждой нити увеличился в три раза. Если масса проводника m=15 г, то его длина I равна ... см.



- **29.** К источнику переменного тока, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность  $P=840~{\rm Br}$ . Если действующее значение напряжения на плитке  $U_{\rm д}=59~{\rm B}$ , то амплитудное значение силы тока  $I_0$  в сети равно ... **A**.
- **30.** Маленькая заряжённая (q=0,10 мкКл) бусинка массой m=5,0 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=15 г и радиус R=8,0 см, равномерно распределён заряд Q=1,0 мкКл. В начальный момент времени кольцо покоилось, а бусинка, находилась на большом расстоянии от кольца. Чтобы бусинка смогла пролететь сквозь кольцо, ей надо сообщить минимальную кинетическую энергию  $E_{\rm K}^{\rm min}$  равную ... мДж.